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Abstract. In this paper, we develop a mathematical programming approach for coordinating
inventory and transportation decisions in an inbound commodity collection system. In par-

ticular, we consider a system that consists of a set of geographically dispersed suppliers that
manufacture one or more non-identical items, and a central warehouse that stocks these items.
The warehouse faces a constant and deterministic demand for the items from outside retailers.

The items are collected by a fleet of vehicles that are dispatched from the central warehouse.
The vehicles are capacitated, and must also satisfy a frequency constraint. Adopting a policy
in which each vehicle always collects the same set of items, we formulate the inventory-routing
problem of minimizing the long-run average inventory and transportation costs as a set

partitioning problem. We employ a column generation approach to determine a lower bound
on the total costs, and develop a branch-and-price algorithm that finds the optimal assignment
of items to vehicles. We also propose greedy constructive heuristics, and develop a very large-

scale neighborhood (VLSN) search algorithm to find near-optimal solutions for the problem.
Computational tests are performed on a set of randomly generated problem instances.

Key words: Inventory-routing, Multi-item inventory replenishment, Transportation, Eco-

nomic order quantity, Column generation, Very large-scale neighborhood search

1. Introduction

Inventory control and transportation planning have traditionally been
managed by different departments in an organization, each of which has
its own set of goals. Consequently, inventory and transportation costs are
typically minimized separately by each department. In general, however,
there is a trade-off between the inventory and transportation costs in a
logistics system, since decreasing one of these cost categories generally
leads to an increase in the other one. Generally, the total inventory and
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transportation costs in the system can be greatly reduced if inventory con-
trol and transportation planning are closely coordinated.
In a multi-item inventory system, it is practical to combine groups of

items in a single replenishment order to accomplish substantial cost savings
(see, e.g., [39]) due to the sharing of fixed replenishment costs. When these
replenishment costs contain a transportation cost component, this cost
sharing is often a consequence of the ability to share truck and loading
equipment between the items. In addition, the design of a vehicle route for
visiting a group of retailers (in the case of a distribution system) or a group
of suppliers (in the case of a collection system) may have a significant effect
on the magnitude of the replenishment costs. Hence, it is desirable to
design an efficient joint replenishment strategy that coordinates inventory
control and transportation planning. The interaction between transporta-
tion and inventory costs has been discussed extensively in the literature in
the context of just-in-time (JIT) (see [46]), vendor managed inventory
(VMI) (see [17, 43]), and supply chain coordination (see [13]).
In this paper, we consider an inbound commodity collection system that

consists of a central warehouse and a set of geographically dispersed sup-
pliers. Each supplier produces one or more non-identical items, each of
which faces demand from outside retailers. The warehouse replenishes the
retailers who, in turn, meet outside demand for the items. We assume that
these retailers operate according to JIT principles in order to reduce inven-
tory levels. As a result, the demand rate faced by the warehouse for each
of its items is constant.
The warehouse uses a fleet of vehicles to collect the items from its suppli-

ers. These vehicles have limited capacity, and they are also subject to fre-
quency constraints that limit the number of trips that each truck can make
per time unit. The frequency constraint may, for example, be due to the
time required for vehicle maintenance or by the fact that material handling
capacity is limited. The costs of the integrated inventory-routing system
include inventory holding costs at the central warehouse, fixed ordering
and vehicle dispatching costs, and vehicle routing costs. It is assumed that
there is no shortage or delay at any supplier. Our objective is to develop
mathematical programming models and algorithms to coordinate inventory
and transportation decisions faced by the warehouse in the system
described above.
It seems unlikely that it is possible to identify an optimal strategy for

our problem. But more importantly, even if such an optimal strategy could
be found efficiently, it may be too complex to be implementable in practice.
Nevertheless, some progress has been made in this direction recently with
the work of Adelman [1], who develops an approximate dynamic program-
ming approach that finds high quality policies without imposing any a pri-
ori policy structure for inventory routing problems where only the routing
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costs are taken into account. Due to the difficulty, as well as perhaps the
undesirability from an implementability point of view, of finding truly opti-
mal policies, it is common practice in inventory-routing problems to con-
sider a given policy structure up front, and focus on finding optimal
parameters for that policy.
We adopt a policy where the set of items is partitioned into disjoint

groups and each group of items is assigned to a vehicle. The vehicle leaves
the warehouse, visits the set of suppliers corresponding to the items in its
group, and returns to the warehouse, where the items are unloaded and
stored. We assume that no item can be assigned to more than one group,
i.e. the orders cannot be split across multiple vehicles. However, it is not
necessary for items produced by the same supplier to be in the same group,
i.e. a supplier can be visited by multiple vehicles. Finally, the fact that the
warehouse faces a constant demand for each item leads to a joint replen-
ishment of all items in a group using an economic order quantity (EOQ)
policy. In Figure 1, we illustrate an example in which there are five suppli-
ers that the warehouse purchases items from and three retailers that are
served by the warehouse. The warehouse has two vehicles, one of which
collects items from suppliers S1, S2, and S3 while the other one collects
items from suppliers S3, S4, and S5. The warehouse faces demand for the
items at the retailers R1, R2, and R3.
Our policy closely resembles to the class of Fixed Partition policies intro-

duced by Bramel and Simchi-Levi [14] for an inventory-routing problem in
which a single item is distributed among retailers. Although such policies
are generally not optimal, they are important from a practical standpoint,
as they are easy to implement. In particular, they allow for efficient inte-
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Figure 1. Inventory-routing system with multiple suppliers and a centralized warehouse.
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gration of several business functions. Chan et al. [18] and Chan and Sim-
chi-Levi [19] have shown that such policies can be highly effective, by
deriving an asymptotic error bound on the obtained solution under differ-
ent assumptions on the transportation cost structure.
Despite restricting ourselves to the policy described above, finding the

optimal policy parameters is still a daunting task. In particular, our prob-
lem is to partition the items into groups, design collection routes for the
vehicles, and specify the replenishment quantities for the items simulta-
neously while minimizing the total vehicle dispatching, vehicle routing,
fixed ordering, and inventory holding costs, while observing vehicle
capacity and frequency constraints. We formulate this problem as a set
partitioning problem, and develop a column generation approach for this
set-partitioning formulation, which can be used to determine lower bounds
on the optimal costs. This lower bound can be used to evaluate the perfor-
mance of heuristic approaches to the problem. In addition, exact solutions
for small problem instances can be obtained by embedding this column
generation procedure in a branch-and-price algorithm. To obtain near-opti-
mal solutions for larger problem instances, we propose several constructive
heuristics. In order to improve the solutions found by these heuristics, we
develop a very large-scale neighborhood (VLSN) search algorithm (see,
e.g., [3, 7]) that efficiently finds a local optimum solution whose quality can
be expected to be high due to the vast size of the neighborhood used.
In the remainder of this section, we will review the literature related to

our problem. We note that the literature on the integrated solution of
inventory and transportation problems is very rich. Our discussion will
focus only on the single- and multiple-item models that are most closely
related to our research. The first model that dealt with the integration of
inventory and routing problems in a single model was developed by Feder-
gruen and Zipkin [26]. They study the allocation of a single item from a
central depot to many retailers using a fleet of capacitated vehicles. The
problem is formulated as a non-linear integer program and interchange
heuristics are modified to solve the problem. Other early references in sin-
gle-item systems include Burns et al. [16], who analyze direct shipping and
peddling strategies for an infinite-horizon one-warehouse multi-retailer dis-
tribution system, and Gallego and Simchi-Levi [29], who study a direct
shipping strategy.
Anily and Federgruen [8] also consider a single-item distribution system

with one depot and a set of retailers. They assume that the demand rate of
each retailer is an integer multiple of some base demand rate, and study a
specific class of replenishment strategies in which a set of (possibly overlap-
ping) regions are defined, where each retailer may belong to several
regions. Vehicles are assigned to regions, and when a vehicle visits a retai-
ler in a particular region, it must visit all retailers in that region. In [8],
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they analyze the case where the inventory is held only at the retailers.
Later, they extend the work to consider the case where inventory can be
held at the central warehouse as well (see [9]), and to more general inven-
tory holding cost functions (see [10]). Other relevant papers that study
inventory-routing problems with a single item are Dror et al. [23], Dror
and Ball [24], Chien et al. [21], and Chaovalitwongse et al. [20].
The literature on multi-item inventory-routing systems is relatively scarce.

Works by Viswanathan and Mathur [45] and Qu et al. [35] are the notable
papers in the area. Viswanathan and Mathur [45] consider the integration
of vehicle routing and inventory decisions for a single warehouse, multi-
retailer, multi-product distribution system with deterministic demands. They
propose a stationary nested joint replenishment policy heuristic for the
problem where replenishment intervals are limited to be power of two mul-
tiples of a base planning period and are computed using a modification of
the standard EOQ formula. Qu et al. [35] consider multi-item joint replen-
ishment in an inbound material-collection system with a central warehouse
using uncapacitated vehicles, where geographically dispersed suppliers face
stochastic demands. They propose a modified periodic policy with an order-
up-to level in which each replenishment period is an integer multiple of a
base period. A heuristic solution method is proposed that decomposes the
problem into inventory and vehicle routing models. For a review of multi-
item inventory-routing systems, we refer the reader to Buffa and Munn [15],
Ben-Khedher and Yano [12], and Bertazzi and Speranza [13].
The outline of this paper is as follows. In Section 2, we model our inte-

grated inventory and transportation problem under the policy described
above as a set partitioning problem. Based on this formulation, we develop
a column generation and a branch-and-price algorithm in Section 3, paying
particular attention to the pricing subproblem, which is a very challenging
optimization problem in its own right. Greedy construction heuristics and
the VLSN algorithms are given in Section 4. In Section 5, we report on
computational results. Finally, concluding remarks and future research
directions are provided in Section 6.

2. Model Formulation

We denote the set of items stored by the central warehouse by S. Item
j ðj 2 SÞ faces a deterministic demand rate Dj. The items are collected from
the suppliers using a fleet of m vehicles. The total system costs consist of
the holding costs associated with each item, which are incurred at a con-
stant rate of hj per unit per year for item j ðj 2 SÞ, as well as fixed costs.
These fixed costs include fixed ordering costs and fixed vehicle dispatching
costs, as well as the total vehicle routing costs associated with a trip, which
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is the cost of a Traveling Salesman Problem (TSP) where the cities are the
warehouse and the suppliers of the items collected in the trip. For conve-
nience, the fixed ordering and dispatching costs are combined in a single
term K per vehicle per trip. Using a policy where each item is assigned to a
single group that is replenished repeatedly using a given vehicle, our inven-
tory-routing problem is then to determine the subsets of items that are
replenished with a single vehicle, as well as the corresponding replenish-
ment quantities, the replenishment interval and the optimal vehicle routes,
that minimize the average total inventory and transportation cost per unit
time.
We will first determine the average total inventory and transportation

costs per unit time for a given set of items S � S assigned to a vehicle, and
under the simplifying assumption that the vehicle is uncapacitated and does
not face a frequency constraint. We assume that the fixed transportation
cost associated with this set is of the form

LðSÞ ¼ Kþ TSPðSÞ
where TSPðSÞ denotes the cost of the optimal TSP route for visiting the
suppliers corresponding to the items in S, and K represents any other fixed
costs associated with using the vehicle. If we denote the time between
replenishments of the items in S by TðSÞ, then the corresponding optimal
replenishment quantities are given by Qj ¼ DjTðSÞ for all items j 2 S. The
total costs per unit time incurred for replenishing the items in S as a func-
tion of the replenishment interval TðSÞ is equal to

LðSÞ
TðSÞ þ

1

2

X

j2S
hjDjTðSÞ:

It is convenient to define the aggregate demand and weighted average unit
holding costs for subset S as follows:

DðSÞ ¼
X

j2S
Dj

hðSÞ ¼
P

j2S hjDj

DðSÞ :

The cost function can then be rewritten as

LðSÞ
TðSÞ þ

1

2
hðSÞDðSÞTðSÞ

which is a standard EOQ-type cost function and thus immediately yields
that the optimal replenishment time for set S is equal to

T �ðSÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2LðSÞ

hðSÞDðSÞ

s

:

Alternatively, we could formulate the cost function in terms of the aggre-
gate replenishment quantity

98 SOMBAT SINDHUCHAO, H. EDWIN ROMEIJN, ELIF AKÇALI AND REIN BOONDISKULCHOK



QðSÞ ¼
X

j2S
Qj:

Note that the individual item replenishment quantities have to satisfy

Qj

QðSÞ ¼
Dj

DðSÞ for j 2 S

or

Qj ¼
Dj

DðSÞQðSÞ for j 2 S:

Since Qj ¼ DjTðSÞ for all j 2 S, we clearly also have QðSÞ ¼ DðSÞTðSÞ.
The total costs per unit time incurred for replenishing the items in S can
now equivalently be written as

LðSÞDðSÞ
QðSÞ þ

1

2
hðSÞQðSÞ:

This is again a standard EOQ-cost function, and leads to the optimal
aggregate replenishment quantity for subset S

Q�ðSÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2DðSÞLðSÞ

hðSÞ

s

:

Using either approach, we obtain that the optimal replenishment quantities
for the individual items are equal to

Q�j ¼ DjT
�ðSÞ ¼ Dj

DðSÞQ
�ðSÞ ¼ Dj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2LðSÞ

DðSÞhðSÞ

s

for j 2 S:

The corresponding optimal costs are equal to

cðSÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2DðSÞLðSÞhðSÞ

p
:

The integrated inventory-routing problem can now be formulated as a set
partitioning problem:

min
Xm

i¼1
cðSðiÞÞ

subject to
[m

i¼1
SðiÞ ¼ S

SðiÞ \ SðkÞ ¼ ; for all i; k ¼ 1; . . . ;m; i 6¼ k:

In the capacitated case where each vehicle has limited capacity C, a similar
partitioning problem can be obtained but with

Q�ðSÞ ¼ min

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2DðSÞLðSÞ

hðSÞ

s

;C

( )

and corresponding optimal costs equal to
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cðSÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2DðSÞLðSÞhðSÞ

p
if

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2DðSÞLðSÞ

hðSÞ

q
OC

LðSÞ DðSÞC þ 1
2 hðSÞC if CO

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2DðSÞLðSÞ

hðSÞ

q

8
><

>:

In addition, the vehicles may face a frequency constraint. This means that
the number of trips per time unit is bounded from above or, equivalently,
the replenishment interval is bounded from below. If F is the maximum
number of trips allowed for each vehicle, then 1=F is the minimum length
of the replenishment interval. Clearly, the set S � S is a feasible subset of
items only if

DðSÞOCF:

With both the vehicle capacity and frequency constraints included in the
model, the aggregate replenishment quantity for the items in a feasible sub-
set S can be determined from

Q�ðSÞ ¼

DðSÞ
F if

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2DðSÞLðSÞ

hðSÞ

q
O DðSÞ

Fffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2DðSÞLðSÞ

hðSÞ

q
if DðSÞ

F O
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2DðSÞLðSÞ

hðSÞ

q
OC

C if CO
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2DðSÞLðSÞ

hðSÞ

q

8
>>><

>>>:

or

Q�ðSÞ ¼ max
DðSÞ
F

;min

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2DðSÞLðSÞ

hðSÞ

s

;C

( )( )

and the corresponding optimal costs can be obtained from

cðSÞ ¼

LðSÞFþ 1
2 hðSÞ

DðSÞ
F if

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2DðSÞLðSÞ

hðSÞ

q
O DðSÞ

F
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2DðSÞLðSÞhðSÞ

p
if DðSÞ

F O
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2DðSÞLðSÞ

hðSÞ

q
OC

LðSÞ DðSÞC þ 1
2 hðSÞC if CO

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2DðSÞLðSÞ

hðSÞ

q
.

8
>>><

>>>:
ð1Þ

In this case, the set partitioning problem becomes

min
Xm

i¼1
cðSðiÞÞ

subject to

SðiÞ � S
[m

i¼1
SðiÞ ¼ S

DðSðiÞÞOCF for all i ¼ 1; . . . ;m

SðiÞ \ SðkÞ ¼ ; for all i; k ¼ 1; . . . ;m; i 6¼ k:
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3. An Exact Solution Approach Using Branch-and-Price

In this section, we will develop a branch-and-price algorithm that can be
used to solve our inventory-routing problem to optimality. This algorithm
is based on a column generation approach to the set partitioning formula-
tion of the problem. After formulating this problem as an integer pro-
gramming problem, we solve its linear programming (LP) relaxation via
column generation. In this approach, we iteratively solve the problem
with only a limited number of candidate subsets for the vehicles. In each
iteration, we solve a subproblem, called the pricing problem, that either
verifies that the current solution is optimal for the entire problem, or
identifies one or more subsets that should be added to the limited model.
We incorporate this solution method for solving the LP-relaxation of the
set partitioning problem in a branch-and-bound algorithm if the optimal
solution of the LP-relaxation is fractional. Applications of this methodol-
ogy have been applied to other set partitioning problems, such as the gen-
eralized assignment problem (see [37]), the multi-period single-sourcing
problem (see [28]), a continuous-time version of that model (see [31]), a
joint location-inventory model (see [38]), and the crew scheduling problem
(see [11]).

3.1. A COLUMN GENERATION APPROACH TO THE SET PARTITIONING

FORMULATION

We will first formulate the set partitioning problem as an integer program-
ming problem. Without loss of generality, we will assume that there are n
items, and S ¼ f1; . . . ; ng. Then, let Ni denote the number of feasible can-
didate subsets of items that can be assigned to vehicle i. Each of these sub-
sets is represented by a binary vector

a‘i ¼ ða‘i1; . . . ; a‘inÞ
>;

where a‘ij ¼ 1 if item j is in candidate subset ‘ for vehicle i, and a‘ij ¼ 0
otherwise. Letting cið�Þ denote the cost function for vehicle i (as derived in
Section 2 for a generic vehicle), we obtain that the cost of subset ‘ of vehi-
cle i is ciða‘i Þ. Note that we use a binary incidence vector of a subset of S
rather than the subset itself as the argument of ci. When it is convenient,
we will also do so for all set functions introduced in Section 2. Finally, we
introduce a binary variable y‘i that takes on the value 1 if we choose subset
‘ for vehicle i, and 0 otherwise. The set partitioning problem can then be
reformulated as

min
Xm

i¼1

XNi

‘¼1
ciða‘i Þy‘i

subject to ðPÞ
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Xm

i¼1

XNi

‘¼1
a‘ijy

‘
i ¼ 1 j ¼ 1; . . . ; n ð2Þ

XNi

‘¼1
y‘i ¼ 1 i ¼ 1; . . . ;m ð3Þ

y‘i 2 0; 1f g ‘ ¼ 1; . . . ;Ni; i ¼ 1 . . . ;m:

The first n constraints ensure that each item is collected by exactly one
vehicle, while the next m constraints state that only one feasible subset of
items can be assigned to each vehicle. It is clear that the number of vari-
ables in this problem grows extremely rapidly in the number of items con-
sidered, which would make even solving the LP-relaxation of (P) a
daunting task. However, since we may expect that most variables will have
a value of zero in the optimal solution, we apply a column generation
approach to solving LP(P), the LP-relaxation of (P).
In this approach, we start by considering only a small number of subsets

(columns) for each vehicle. These can, for example, be obtained using a
heuristic. After obtaining the solution to the master problem, we solve a
pricing problem in order to either identify columns that would provide a
better objective value if they would be added to the problem, or conclude
that the current solution is optimal. This process is then repeated itera-
tively until the optimal solution is obtained. To check for optimality of an
intermediate solution we consider the dual problem (D) of LP(P). Letting
lj denote the dual variables associated with constraints (2) (j ¼ 1; . . . ; n)
and di the dual variables associated with constraints (3) (i ¼ 1; . . . ;m), and
noting that we replace the binary constraints by non-negativity constraints
in the LP-relaxation of (P), we obtain

max
Xn

j¼1
lj þ

Xm

i¼1
di

subject to ðDÞ
Xn

j¼1
a‘ijlj þ diOciða‘i Þ ‘ ¼ 1; . . . ;Ni; i ¼ 1; . . . ;m

lj free j ¼ 1; . . . ; n

di free i ¼ 1; . . . ;m:

ð4Þ

Now suppose that we have the optimal primal and, in particular, dual
solution to a restricted version of LP(P) and (D) in which only a subset of
the columns has been taken into account. Extending the primal optimal
solution with the implicit zero values of all omitted variables, we find that
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if the corresponding dual solution is feasible for the entire dual problem
(D), then the current solution is optimal.

3.2. THE PRICING PROBLEM

The pricing problem aims to find, for each vehicle i, the feasible subset
(represented by a binary vector ai), for which the corresponding constraint
in (D) is most violated. Denoting the decision variable representing a feasi-
ble subset for vehicle i by z, and the optimal dual solution to the restricted

version of LP(P) by ðl̂; d̂Þ, the pricing problem for vehicle i can be formu-
lated as follows:

max
Xn

j¼1
l̂jzj � ciðzÞ

subject to (PPi)
Xn

j¼1
DjzjOCiFi

zj 2 f0; 1g for j ¼ 1; . . . ; n;

where Ci denotes the capacity of vehicle i, and Fi denotes its maximum fre-
quency. If the optimal solution value of (PPi) is no more than �d̂i, then all
dual constraints for vehicle i are satisfied. If the optimal solution value of
(PPi) exceeds �d̂i, the corresponding optimal solution yields a subset for
vehicle i that may improve the solution if added to the limited set parti-
tioning problem.
In the remainder of this section, we will develop a branch-and-bound

algorithm that can be used to solve the pricing problem (PPi) to optimality.
For notational convenience, we will omit the index i indicating the vehicle,
and consider a general pricing problem (PP). Similar to often used branch-
and-bound strategies for the knapsack problem (see, e.g., [34]), we will
branch on the binary variables z. Therefore, each node of the branch-and-
bound tree is characterized by a partition of the items in S into the follow-
ing three sets: J 0, J1, and J:

J 0 ¼ fj 2 S : zj has been fixed to 0g
J1 ¼ fj 2 S : zj has been fixed to 1g
J ¼ fj 2 S : zj has not been fixedg:

Note that we can set zj ¼ 0 for all items j such that l̂j < 0 without loss of
optimality, which may significantly reduce the size of the problem. So, we
will assume that these items are always included in the set J 0. We can now
find an upper bound on the objective function value of (PP) in a node of
the tree as follows. Note that we can bound the function c given in Equa-
tion 1 by noting that the fixed costs are given by
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LðzÞ ¼ Kþ TSPðzÞ
so that we can bound these from below by

LðzÞPKþ TSPðJ1Þ
to obtain

cðzÞPcðzÞ
where

cðzÞ ¼

Kþ TSPðJ1ÞÞFþ 1
2 hðzÞ

DðzÞ
F if

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2DðzÞðKþTSPðJ1ÞÞ

hðzÞ

q
O DðzÞ

F
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2DðzÞðKþ TSPðJ1ÞÞhðzÞ

p
if DðzÞ

F O
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2DðzÞðKþTSPðJ1ÞÞ

hðzÞ

q
OC

ðKþ TSPðJ1ÞÞ DðzÞC þ 1
2 hðzÞC if CO

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2DðzÞðKþTSPðJ1ÞÞ

hðzÞ

q
.

8
>>><

>>>:

If the number of items in J is small, we may efficiently solve the problem

max
Xn

j¼1
l̂jzj � cðzÞ

subject to (PP
1
)

Xn

j¼1
DjzjOCF

zj ¼ 0 for j 2 J 0

zj ¼ 1 for j 2 J1

zj 2 f0; 1g for j 2 J

by complete enumeration, which will clearly provide a valid upper bound
in the current node of the branch-and-bound tree. However, in general we
will need to find an upper bound that can be computed more efficiently.
Clearly, we can find an alternative lower bound on the costs by, in addi-

tion to using the lower bound on LðzÞ, ignoring the capacity and frequency
constraints, which yields

cðzÞP
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2DðzÞðKþ TSPðJ1ÞÞhðzÞ

q
:

Recalling the definition of the aggregate demand and inventory holding
cost functions, we may rewrite the lower bound as

cðzÞP

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ðKþ TSPðJ1ÞÞ
Xn

j¼1
hjDjzj

vuut :

An upper bound on the solution value of (PP) given the sets J 0 and J1 can
now be determined by solving the following optimization problem

max
Xn

j¼1
l̂jzj �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ðKþ TSPðJ1ÞÞ
Xn

j¼1
hjDjzj

vuut

subject to (PP
2
)
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zj ¼ 0 for j 2 J 0

zj ¼ 1 for j 2 J1

zj 2 f0; 1g for j 2 J

where we have also ignored the capacity and cardinality constraints. This
problem can now be solved efficiently using a result from Huang et al. [31].
This result says that, if the jJj relevant items are renumbered and sorted in
non-increasing order of the ratio

l̂j

hjDj
ð5Þ

the optimal solution will be of the form

z�j ¼
1 for j ¼ 1; . . . ; k
0 for j ¼ kþ 1; . . . ; jJj

�

for some k ¼ 0; . . . ; jJj.
Since our relaxation yields an integral solution, we cannot use this solu-

tion to guide the branching. We will instead use a strategy that has been
successfully applied to many knapsack and related problems. This is a
depth-first-search strategy that first explores the subtree in which the vari-
able corresponding to the most promising item is set to one. For our prob-
lem, this means that we first consider the subproblem in which the
unassigned item with the largest positive ratio (5) is added to J1.
Since any feasible solution to the pricing problem for vehicle i with a

value that exceeds �d̂i provides a subset of items that is attractive, it is not
strictly necessary to solve the pricing problem to optimality, especially in
the early stages of the column generation procedure. We therefore usually
implement the branch-and-bound procedure for (PP) heuristically by find-
ing an approximate bound in each node. That is, we find a value that will
often, but not necessarily, be an upper bound to the objective function
value in the current node of the tree. This approximation is based on con-
sidering solutions by sequentially adding items according to the ranking
scheme given by the ratio (5). Observing the capacity and cardinality con-
straints, we then choose the solution that maximizes the objective function
of (PP

1
). Since this procedure does not necessarily find the optimal solution

to (PP
1
), the corresponding bound is not exact, and therefore the solution

to the pricing problem obtained is not necessarily optimal.

3.3. BRANCHING

We now return to our main problem (P). If the optimal solution of LP(P)
obtained using the column generation approach is not integral, we need to
use branch-and-price. It remains to discuss the corresponding branching
strategy. As has been mentioned by several authors (e.g., [28]), branching
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on the subset selection variables y‘i in the set partitioning formulation is
problematic, since excluding a subset from consideration would require
finding the 2nd best solution to the pricing problem. However, we can
transform the subset selection variables to assignment variables that indi-
cate the fraction of an item that is included in a subset:

xij ¼
XNi

‘¼1
a‘ijy

‘
i :

Clearly, x is integral if y is integral. In a node of the branch-and-price tree,
we can now branch on fractional assignment variables. This corresponds
to requiring or disallowing an item to be replenished by vehicle i.

4. Heuristics

In Section 3 we have developed a branch-and-price algorithm to solve the
inventory-routing problem described in Section 2. Clearly, we can only
expect to be able to find an exact solution in reasonable time for relatively
small problem instances. The computational effort is likely to increase rap-
idly when the number of items, suppliers, and/or the vehicle capacities
increase. In this section we will therefore focus on heuristic approaches to
the problem. In particular, we will describe two constructive heuristics that
can be used to find an initial feasible solution by constructing routes for
the vehicles either sequentially or simultaneously. In addition, we will
develop a neighborhood search algorithm that can be used to improve a
solution found by the constructive heuristics.

4.1. DISTANCE RATIO (DR) HEURISTIC

Our first heuristic constructs routes sequentially for one vehicle at a time.
The idea of the heuristic is to add items to a vehicle whose supplier is (a)
located far away from the warehouse, but (b) close to at least one supplier
that is already visited in the route. In that case, it is attractive to add the
item to the vehicle under consideration rather than supplying this item with
another vehicle. Items are added until no more items can be added without
violating the capacity and/or frequency constraints. Initially, when the
route for a vehicle is empty, this criterion says that we should choose the
item that is located furthest away from the warehouse.
When a group of items is assigned to a vehicle and no more items can

be added, we estimate the cost associated with the vehicle by solving its
associated TSP heuristically. We first finding a TSP tour using the Arbi-
trary Insertion (AI) heuristic (see [36]). To improve the vehicle tour, the 2-
opt exchange heuristic studied by Croes [22], Lin [32], and Lin and Kerni-
ghan [33] is utilized.
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In the remainder, let dj1j2 denote the distance (cost) from the supplier of
item j1 to the supplier of item j2, for all j1, j2 2 S. Similarly, let d0j and dj0
denote the distance from the warehouse to the supplier of item j and from
the supplier of item j to the warehouse.

DR heuristic

Step 0. Initialize an empty route for the next vehicle.
Step 1. For each ungrouped item that can be added to the vehicle without

violating its capacity constraint, say j, determine its distance-ratio
as the minimum value of djj0=d0j over all items j0 served by the cur-
rent vehicle. If the current vehicle does not contain any items, let
the distance-ratio be 1=d0j. If no such items exist, go to Step 3.

Step 2. Find the item with the smallest distance-ratio, assign it to the vehi-
cle, and return to Step 1.

Step 3. If all items have been assigned to a vehicle, go to Step 5. Other-
wise, if there are available vehicles left, return to Step 0.

Step 4. For each ungrouped item, determine the vehicle to which it can be
added with minimal capacity violation. Find the item requiring the
smallest violation, assign it to the vehicle, and return to Step 3.

Step 5. Find a TSP tour for all vehicles using AI and 2-opt.

As an alternative, we have explored the possibility of choosing the first
item in the vehicle to be the unassigned item that has the smallest replen-
ishment interval when replenished individually. In this case, Steps 0 and 1
in the algorithm are replaced by

Step 0. Initialize an empty route for the next vehicle, and find the un-
grouped item with the smallest individual replenishment interval
that can be added to this vehicle without violating its capacity
constraint. Add that item to the vehicle.

Step 1. For each ungrouped item that can be added to the vehicle without
violating its capacity constraint, say j, determine its distance-ratio
as the minimum value of djj0=d0j over all items j 0 served by the cur-
rent vehicle. If no such items exist, go to Step 3.

4.2. ARBITRARY ITEM INSERTION (AII) HEURISTIC

This heuristic is based on the Arbitrary Insertion (AI) heuristic for the
TSP (see [36]). In this heuristic, we start with an empty route for each vehi-
cle. On each iteration, given a partial route for each vehicle, we find the
total insertion costs for each unassigned item and each possible slot (i.e., a
(depot, supplier), (supplier, supplier), or (supplier, depot) pairs) in each
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partial route. The insertion costs estimate the additional total costs to be
incurred if an item is inserted in a given slot in a route. This estimate is
obtained by first finding the traditional TSP insertion costs associated with
inserting the item in a route, and next computing the total costs incurred
by the vehicle with this additional item. More formally, consider a vehicle,
say i, and a given pair of items, say j1 and j2, that are visited consecutively
in the current route for that vehicle. Moreover, let bLðiÞ denote the length
of the current costs associated with the route. Then, ignoring for simplicity
the capacity and frequency constraints, the corresponding insertion costs
are: ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2DðSi [ fjgÞð bLðiÞ þ dj1j þ djj2 � dj1j2ÞhðSi [ fjgÞ
q

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2DðSiÞ bLðiÞhðSiÞ

q
:

Analogously, we can derive the insertion costs in the presence of capacity
and frequency constraints.

AII heuristic

Step 0. Initialize an empty route for each vehicle.
Step 1. Randomly select an unassigned item for insertion, and determine

its insertion costs corresponding to each slot in each vehicle’s par-
tial route, for each vehicle to which the item can feasibly be
assigned. If no such vehicle exists, we consider the insertion slots
in the vehicle route for which the capacity constraint will be least
violated.

Step 2. Find the minimum insertion cost for this item, and insert the item
in the corresponding slot.

Step 3. If all items have not been assigned, return to Step 1. Otherwise,
improve, if possible, the TSP tour for each vehicle by applying a
2-opt exchange heuristic and stop.

4.3. VERY LARGE-SCALE NEIGHBORHOOD SEARCH (VLSN)

Neighborhood search algorithms, in which an initial solution is iteratively
replaced by an improved solution until no further improvements can be
found or some termination criterion is satisfied, are often the most effective
approaches available for solving partitioning problems. For the traditional
Vehicle Routing Problem, 1- and 2-exchange heuristics have been devel-
oped and applied with some success (see, e.g., [44]). However, these meth-
ods search for an improved solution in a relatively small neighborhood of
the current solution. Much better results may be expected if we are able to
search larger neighborhoods. Rather than extending the 1- and 2-exchange
heuristics to our inventory-routing problem, we will develop a very large-
scale neighborhood (VLSN) search algorithm. Using this technique, very
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large neighborhoods can be explored implicitly through the solution of a
subproblem, rather than explicitly by enumeration, as is common practice
with small neighborhood search methods. This technique has relatively
recently been developed and applied with much success to several hard
combinatorial optimization problems. For example, the technique has been
applied to vehicle routing problems (see [25, 30, 42]), minimum makespan
machine scheduling (see [27]) and other scheduling problems (see [42]), the
capacitated minimum spanning tree problem (see [5, 6]), and several single-
sourcing problems (see [4, 31]). Surveys of VLSN can be found in Ahuja
etal. [3, 7].
The VLSN algorithms that we propose can be viewed as extensions of 1-

and 2-exchange heuristics for VRPs. In the first algorithm, which we call
Supplier-VLSN (S-VLSN), we consider a neighborhood of solutions that
can be reached by moving groups of items with a common supplier that
are currently replenished by one vehicle to another vehicle. In particular,
we consider simultaneous moves of this form, where each of a subset of
the vehicles exchanges one group of items by another. A solution is called
a neighbor of a given solution if it can be reached through a set of moves
of the following form: for some sequence of distinct vehicles i1; . . . ; ik, a
group of items is moved from vehicle i1 to vehicle i2, while simultaneously
a group of items is moved from vehicle i2 to vehicle i3; . . ., a group of items
is moved from vehicle ik�1 to vehicle ik, and a group of items is moved
from vehicle ik to vehicle i1. This type of exchange is called a cyclic
exchange. An even larger neighborhood is obtained when we also consider
sets of moves that do not include the last one, that is, one vehicle ‘‘loses’’
a group of items without ‘‘gaining’’ one, while another vehicle ‘‘gains’’ a
group of items without ‘‘losing’’ one. Those type of exchanges are called
path exchanges. The second algorithm, which we call Item-VLSN (I-
VLSN), is similar to S-VLSN, with the distinction that we now do not
move groups of items with a common supplier, but single items only.
Efficient methods for identifying an improving neighbor without explicit

enumeration and evaluation of all neighbors in the neighborhood are based
on a characterization of the neighborhood through a so-called improve-
ment graph (see [3, 7]), which captures all information needed to evaluate
any exchange. The improvement graph for cyclic exchange can be con-
structed by creating a node corresponding to each item (or group of items)
that is a candidate for exchange. Then, an arc is created from one node to
another if it is possible to move the item(s) corresponding to the first node
to the vehicle that currently replenishes the item(s) corresponding to the
second node, while removing these latter items from their vehicle. The arc
costs in the improving graph are defined to be the change in costs due to
the move incurred by the ‘‘receiving’’ vehicle. To allow also path
exchanges, the improvement graph is extended by a node for each vehicle
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as well as a dummy node. Then, an arc with appropriate cost is created
from an item-node to a vehicle-node if it is possible to move the item(s)
corresponding to the item-node to the vehicle corresponding to the vehicle-
node without removing any items from that vehicle. Similarly, an arc with
appropriate cost is created from the dummy node to each item-node, mod-
eling the fact that an item may leave a vehicle without being replaced by
one. Finally, zero-cost arcs are created from the vehicle-nodes to the
dummy node.
Each neighbor is now represented by a so-called subset-disjoint cycle in

the improvement graph, that is, a cycle whose nodes correspond to distinct
vehicles. (Note that a cycle that does not contain the dummy node corre-
sponds to a cyclic exchange, and a cycle that does contain the dummy
node corresponds to a path exchange.) Furthermore, the cost change from
the current solution to the neighbor is equal to the total cost of the corre-
sponding cycle in the improvement graph. As shown by Thompson and
Orlin [41], and Thomson and Psaraftis [42], the problem of finding an
improving neighbor therefore reduces to the problem of finding a negative-
cost subset-disjoint cycle in the improvement graph. However, the problem
of determining whether there exists a subset-disjoint cycle in the improve-
ment graph is NP-complete, and the problem of finding a negative cost
subset-disjoint cycle is NP-hard (see [40, 41, 42]). We will employ heuristics
for this problem that have been developed by Ahuja et al. [2, 5, 6], and
appear to be highly effective in practice.
Both constructive heuristics that we have described earlier in this section

for finding an initial solution may find a solution that violates the capacity
constraint of one or more vehicles. If this is the case, we will use the VLSN
algorithm described in this section to first solve a Phase I problem with the
temporary objective function of minimizing the total constraint violations,
i.e., the goal of finding a feasible solution. Next, we will return to the origi-
nal problem, and employ the VLSN algorithm improve that feasible solu-
tion.

5. Computational Results

In order to test the performance of our algorithms, we have performed
computational experiments using a randomly generated set of test
instances. In this section, we will first discuss the performance of the col-
umn generation and exact branch-and-price algorithm on a number of
small instances. As was expected, the branch-and-price method is very
time-consuming. However, these tests can be used to assess the tightness of
the lower bound obtained using the column generation solution to the LP-
relaxation of the set partitioning formulation. In the remaining experiments
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we compare the performance of our constructive and improvement heuris-
tics, and assess the quality of the solutions obtained by comparing the heu-
ristic costs to the column generation lower bound on the optimal costs.

5.1. GENERATION OF THE TEST INSTANCES AND IMPLEMENTATION

For our tests, we have generated random instances as follows. The demand
rate (demand per unit time) for each item is generated from the uniform
distribution on [100, 300], and the inventory holding cost rate (cost per
unit per unit time) for each item is generated from the uniform distribution
on ½1; 15�. The items are randomly assigned to one of 10 suppliers, while
ensuring that each of these manufactures at least one item. The locations
of the warehouse and suppliers are generated uniformly in the square
½0; 20�2 � R2, and Euclidean distances are used to measure transportation
costs, with unit cost per unit distance traveled.
We have defined a base case where each vehicle has a capacity of

C ¼ 150 units, the fixed transportation cost is set to K ¼ 50, and the maxi-
mum number of trips allowed per time unit by each vehicle is F ¼ 10. We
identify the size of an instance by the number of items, n, and the number
of vehicles, m. In our experiments, we have considered four different sizes:
15 items and 3 vehicles, 30 items and 5 vehicles, 40 items and 6 vehicles,
and 50 items and 8 vehicles, where the number of vehicles has been chosen
to ensure that in most instances a solution with this number of vehicles
indeed exists given the capacity constraints. In addition, we have per-
formed a sensitivity analysis of the computational results for changes in
the capacity, frequency, and fixed cost parameters, where we have adjusted
the number of available vehicles accordingly.
We have implemented all our algorithms and heuristics using the C++

programming language on a PC with a 1.80GHz Intel Pentium 4 CPU
and 240 MB of RAM. To obtain solutions to the LP-relaxation of the set
partitioning problem in our column generation procedure, we used the
CPLEX 8.1 solver.

5.2. EXPERIMENTS

5:2:1: Experiment 1: Performance of Branch-and-Price and Quality of the Lower

Bounding Procedure

The goal of our first experiment is to test the computational efficiency of
the branch-and-price algorithm and assess the quality of the lower bound
obtained from the column generation procedure. For this experiment, we
have used the branch-and-price algorithm to obtain optimal solutions for
all 15-item instances, as well as the corresponding lower bounds. The
results of this test on the 10 instances are given in Table 1.
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We conclude that the branch-and-price algorithm is very time-consum-
ing, even for these small problem instances. However, the column genera-
tion procedure is able to find a reasonably tight lower bound to the
optimal costs efficiently, with an average gap between the optimal cost and
the lower bound of approximately 2.5%, and an average computational
time of 13.5 CPU seconds.

5:2:2: Experiment 2: Performance of the Constructive Heuristics and Improvement

Algorithms

In our second set of experiments, our goal is to assess the quality of the
solutions obtained by our constructive heuristics and improvement algo-
rithms. We first solve each instance using the constructive heuristics. Next,
we improve these initial solutions using the I-VLSN and S-VLSN improve-
ment algorithms. We then compare the objective function value found by
the heuristic to the lower bound for each instance using the column genera-
tion approach. In addition, for the instances with n ¼ 15 items we also
compare the heuristic costs to the optimal costs. The results of these exper-
iments are given in Tables 2 and 3.
We report the average as well as the maximum cost deviations from the

lower bound of the solutions obtained by both constructive heuristics and
both VLSN improvement algorithms. The results show that the DR heuris-
tic outperforms the AII heuristic both with respect to the average and the
maximum error over all 10 instances. In addition, its performance improves
with increasing problem size, while this effect is absent from the AII heuris-
tic. With respect to the VLSN improvement algorithms, I-VLSN outper-
formed S-VLSN for all cases, except for the largest problem with n ¼ 50
and the starting solution found by AII. The I-VLSN algorithm based on

Table 1. Optimal cost vs. Lower bound (n = 15, m = 3)

Problem LB Optimal % deviation

1 2778.1 2778.1 0.00

2 2645.8 2645.8 0.00

3 2545.2 2598.6 2.10

4 2669.7 2761.2 3.43

5 2557.6 2726.0 6.58

6 2563.9 2699.3 5.28

7 2511.3 2526.7 0.61

8 2378.3 2426.2 2.02

9 2556.2 2577.2 0.82

10 2710.0 2825.5 4.26

Avgerage 2.51

Max 6.58

Time (sec) 13.5 13571.3
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the DR solution on average provided the solution with smallest error, with
a maximum average error of 3.28%. Moreover, as for the DR heuristic, the
effectiveness of I-VLSN increases when the number of items increases.
Finally, in Table 4 we provide the computation time needed for finding

the lower bound as well as for the heuristics. We immediately see that the
heuristics are extremely efficient, finding a solution in usually less than a
second. On the other hand, the time needed for computing the lower
bound is very time-consuming, increasing dramatically as the problem size
increases. However, as we have seen in Tables 2 and 3, the solution quality
of the heuristics is very good, and improves as the problem size increases.

Table 2. Error bounds of solutions obtained using the constructive heuristics and improvement algo-

rithms

Size Error

bound (%)

n m DR I-VLSN S-VLSN AII I-VLSN S-VLSN

15 3 Avg 8.81 3.28 4.91 9.98 3.57 5.45

Max 14.11 6.92 9.68 16.94 6.57 9.33

30 5 Avg 8.25 2.84 5.63 12.18 3.89 4.94

Max 11.32 6.73 7.46 16.71 6.51 6.46

40 6 Avg 5.53 2.69 3.38 13.00 3.64 4.30

Max 8.21 3.20 6.08 16.19 4.58 6.16

50 8 Avg 5.43 2.37 3.70 13.31 4.04 3.76

Max 8.48 3.31 5.64 17.74 7.44 5.00

Table 3. Error with respect to optimal solution of solutions obtained using the constructive heuristics

and improvement algorithms

Size Error bound (%)

n m DR I-VLSN S-VLSN AII I-VLSN S-VLSN

15 3 Avg 6.20 0.76 2.37 7.31 1.05 2.89

Max 14.11 5.26 9.04 15.99 6.04 9.04

Table 4. Average computation times for the column generation method (LB) and the heuristics

Size Average computation time (sec)

n m LB DR I-VLSN S-VLSN AII I-VLSN S-VLSN

15 3 13.5 0.000 0.017 0.006 0.000 0.027 0.011

30 5 849.5 0.000 0.136 0.008 0.000 0.235 0.038

40 6 14207.6 0.002 0.217 0.011 0.002 0.525 0.081

50 8 48672.0 0.003 0.433 0.016 0.006 1.378 0.133
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Therefore, the need for computing the lower bound in practice decreases as
the problem size increases.

5:2:3: Experiment 3: Sensitivity Analysis

In order to investigate the impact of changing some of the problem param-
eters on the computational performance of our heuristics and algorithms,
we have conducted a third set of experiments. Using the 40-item instances
as a base case, we have varied the vehicle capacity C from 100 to 200, the
maximum number of trips per vehicle F from 8 to 12, and the fixed trans-
portation cost K from 0 to 100. In each case, the number of vehicles is
adjusted to suit the capacity constraints. Based on the results in Table 2,
we have chosen to perform this sensitivity analysis for the best constructive
heuristic, DR, and the best overall method, DR followed by I-VLSN.
The results in Tables 5–7 show that both methods perform better on

average for problems with smaller vehicle capacity, smaller maximum num-
ber of trips per time unit, or larger fixed transportation cost. The error
bound also seems to be more stable across instances when the vehicle
capacity or the maximum number of trips is smaller.

6. Concluding Remarks and Future Research

In this paper, we have developed a mathematical formulation model that
integrates the inventory replenishment and transportation decisions for an
inbound commodity collection system with one warehouse, multiple suppli-
ers, and multiple items. We consider the problem in a deterministic setting,
and assume that the items are replenished according to an economic order
quantity policy. In order to find the optimal operating parameters for this
assumed policy, we develop a set partitioning formulation for the problem
and propose a column generation approach that can be used to obtain a
lower bound on the objective function value. In order to solve the small
size instances to optimality, we also develop a branch-and-price algorithm.
Since the branch-and-price algorithm is not scalable, i.e., the solution time
requirement increases very quickly as the size of the instance increases, we
develop constructive as well as improvement heuristics that efficiently find
near-optimal solutions for the problems.
Our computational analysis indicates that our constructive heuristics

used in conjunction with one of the proposed VLSN algorithms can find
near-optimal solutions very efficiently. The sensitivity analysis has shown
that this behavior is robust under changes in various key problem parame-
ters. For smaller instances or with some more time investment, the column
generation algorithm may be used to provide a bound on the deviation of
the cost of the heuristic solution from the optimal cost.
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In our current analysis, we assume that the retailers operate according to
JIT principle. This allows us to use economic order quantities for replen-
ishing the inventory for the items. An interesting extension to our work
would consider a system where the retailers face stochastic demand. In
such a system, we could assume that each retailer uses a standard periodic
review order-up-to policy. In this case, the amount that needs to be deliv-
ered to a retailer is a random variable, which significantly complicates the

Table 7. Error bounds when the fixed transportation cost is varied

K Error bound (%)

DR I-VLSN

0 Avg 4.34 3.49

Max 7.07 5.96

20 Avg 5.26 3.29

Max 7.93 5.95

50 Avg 5.53 2.69

Max 8.21 3.20

100 Avg 4.06 2.04

Max 6.79 2.95

Table 5. Error bounds when the vehicle capacity is varied

C m Error bound (%)

DR I-VLSN

100 9 Avg 5.34 1.91

Max 6.66 3.05

150 6 Avg 5.53 2.69

Max 8.21 3.20

200 5 Avg 7.45 2.89

Max 11.25 4.59

Table 6. Error bounds when the maximum number of trips allowed is varied

F m Error bound (%)

DR I-VLSN

8 8 Avg 5.45 2.24

Max 6.63 2.67

10 6 Avg 5.53 2.69

Max 8.21 3.20

12 5 Avg 5.12 2.93

Max 10.00 4.50

AN INTEGRATED INVENTORY-ROUTING SYSTEM 115



problem in the presence of capacity constraints for the vehicles. Alterna-
tively, we could consider a periodic review, fixed order quantity policy.
Although the behavior of such a policy is not known even for single-item
single-retailer systems, it has the advantage that the quantities delivered to
the retailers are deterministic.
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